Daily Runoff Forecasting Using Ensemble Empirical Mode Decomposition and Long Short-Term Memory
نویسندگان
چکیده
Hydrological series data are non-stationary and nonlinear. However, certain data-driven forecasting methods assume that streamflow stable, which contradicts reality causes the simulated value to deviate from observed one. Ensemble empirical mode decomposition (EEMD) was employed in this study decompose runoff into several stationary components a trend. The long short-term memory (LSTM) model used build prediction for each sub-series. input set contained historical flow of simulation station, its upstream hydrological meteorological element series. final LSTM selected by MI method. To verify effect EEMD, Radial Basis Function (RBF) predict sub-series, decomposed EEMD. In addition, characteristics EEMD-LSTM different months runoff, GM(group month)-EEMD-LSTM up comparison. key difference between GM-EEMD-LSTM is GM must divide sequence on monthly basis, followed with EEMD model. results sub-series obtained RBF exhibited better statistical performance than those original series, especially EEMD-LSTM. overall low-water superior model, but flood season slightly lower both models significantly improved compared
منابع مشابه
Short Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression
The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...
متن کاملthe effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus
از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...
15 صفحه اولA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملDaily Runoff Forecasting using Artificial Neural Network
Rainfall-Runoff is the most important hydrological variables used in most of the water resources applications. Watershed based planning and management requires thorough understanding hydrological process and accurate estimation of runoff. An Artificial Neural Network (ANN) methodology was employed to forecast daily runoff for the Kadam watershed of G-5 sub-basin of Godavari river basin. On the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Earth Science
سال: 2021
ISSN: ['2296-6463']
DOI: https://doi.org/10.3389/feart.2021.621780